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Directional Derivatives
.

The directional derivative

of z=f( x ,y ) at the point

( a ,b ) in the direction of

v=< mis ) F ( 0,0 ) is

Drf ( a

,b÷
(a,b).,Y@



Exanpiel :

:(
× , y ) = In ( ( xy )× )

,

( a
,
b) = ( l

,
e )

,

v= ( 6
,
2) . Find

Drf ( be ) .

÷ylt In ( ( xylx )

= × In ( xy )

= x ( Ing ) Hncy ))

= × In ( x ) txlnly )



f ( × , y ) = × In ( x ) + × In ly )

of = ( EE ,ft.K ) +1+1^14 , ±y )
=L In ( as ) +1

, ±y 7

Of ( l
, e) = ( In (e) +1

,
te )

= < 2 ,
te )



V. ( 6,27 , llvlk Tba
no

Drf ( I,÷
- ( he ) ' Fu

= ( a , ⇒ . C Fao Frud

=uto(12€



The Gradient and maximum Increase
.

Q : In which direction is

the directional derivative

increasing the fastest ?

A i The direction of the

gradient !
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In this case
, the

magnitude of the change
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Find the direction of

maximum increase at

the point
Answer = Tg ( 1,1 )

Calculate !
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