Announcements

1) Exam 2 on Thursday

Directional Derivatives

The directional derivative of $z=f(x, y)$ at the point (a, b) in the direction of $v=\left\langle v_{1}, v_{2}\right\rangle \neq\langle 0,0\rangle$ is

$$
\begin{aligned}
& D_{v} f(a, b) \\
& =\nabla F(a, b) \cdot \frac{V}{\|v\|}
\end{aligned}
$$

Example 1: Let

$$
\begin{aligned}
& f(x, y)=\ln \left((x y)^{x}\right) \text {, } \\
& (a, b)=(1, e) \text {, } \\
& v=\langle 6,2\rangle \text {. Find } \\
& D_{v} f(1, e) \\
& f(x, y)=\ln \left((x y)^{x}\right) \\
& =x \ln (x y) \\
& =x(\ln (x)+\ln (y)) \\
& =x \ln (x)+x \ln (y)
\end{aligned}
$$

$$
\begin{aligned}
f(x, y) & =x \ln (x)+x \ln (y) \\
\nabla f & =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \\
& =\left\langle\ln (x)+1+\ln (y), \frac{x}{y}\right\rangle \\
& =\left\langle\ln (x y)+1, \frac{x}{y}\right\rangle \\
\nabla f(1, e) & =\left\langle\ln (e)+1, \frac{1}{e}\right\rangle \\
& =\left\langle 2, \frac{1}{e}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
v & =\langle 6,2\rangle,\|v\|
\end{aligned} \begin{aligned}
& 36+4 \\
&=\sqrt{40} \\
& D_{v} f(1, e) \\
&=\nabla f(1, e) \cdot \frac{v}{\|v\|} \\
&=\left\langle 2, \frac{1}{e}\right\rangle \cdot\left\langle\frac{6}{\sqrt{40}}, \frac{2}{\sqrt{40}}\right\rangle \\
&=\frac{1}{\sqrt{40}}\left(12+\frac{2}{e}\right)
\end{aligned}
$$

The Gradient and Maximum Increase

Q: In which direction is the directional derivative increasing the fastest?
A The direction of the gradient!

$$
\begin{aligned}
& D_{v} f(a, b) \\
& =\nabla f(a, b) \cdot \frac{v}{\|v\|} \\
& =\|\nabla f(a, b)\| \underbrace{\left\|\frac{v}{\|v\|}\right\| \cos (\theta)}_{=1} \\
& =\|\nabla f(a, b)\| \cos (\theta)
\end{aligned}
$$

Biggest when $\cos (\theta)=1$, that is when $\theta=0$, i, e. v is parallel to $\nabla f(a, b)$

In this case, the magnitude of the change is

$$
\left|D_{\nabla f}^{f}(a, b)\right|=\|\nabla f(a, b)\|
$$

Example 2: Let

$$
g(x, y)=(x y)^{\arctan \left(\frac{x}{y}\right)}
$$

Find the direction of maximum increase at the point $(1,1)$.

Answer $=\nabla g(1,1)$ Calculate 1

$$
\begin{aligned}
&(x y)^{\arctan \left(\frac{x}{y}\right)} \\
&= e^{\left.\ln \left((x y)^{\arctan (x)} y\right)\right)} \\
&= e^{\arctan \left(\frac{x}{y}\right) \ln (x y)} \\
& \frac{\partial g}{\partial x}= e^{\arctan \left(\frac{x}{y}\right) \ln (x y)} \\
& \frac{\partial}{\partial x}\left(\arctan \left(\frac{x}{y}\right) \ln (x y)\right) \\
&=(x y)^{\arctan \left(\frac{x}{y}\right)} \cdot\left(\arctan \left(\frac{x}{y}\right)\right.
\end{aligned}
$$

$$
=(x y)^{\arctan \left(\frac{x}{y}\right)} .
$$

$$
\left(\arctan \left(\frac{x}{y}\right) \frac{1}{x}+\ln (x y) \frac{1}{y\left(1+\left(\frac{x}{y}\right)^{2}\right)}\right)
$$

evaluate at $(1,1) \quad(\ln (1)=0)$
We get

$$
\begin{aligned}
& 1^{\arctan (1)} \cdot \arctan (1)-1 \\
& =\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(e^{\ln (x y) \arctan \left(\frac{x}{y}\right)}\right) \\
& =(x y)^{\arctan \left(\frac{x}{y}\right)} \cdot \\
& \left(\arctan \left(\frac{x}{y}\right) \cdot \frac{1}{y}+\ln (x y) \frac{-x}{\left.y^{2}\left(1+\left(\frac{x}{y}\right)^{2}\right)\right)}\right. \\
& \text { plug in }(1,1)(\ln (1)=0)
\end{aligned}
$$

We get

$$
\frac{\pi}{4}
$$

$$
\nabla g(1,1)=\langle\pi / 4, \pi / 4\rangle
$$

Maximum rate of change

$$
\begin{aligned}
& =\|\nabla g(1,1)\| \\
& =\frac{\pi}{4} \sqrt{2}
\end{aligned}
$$

